Add like
Add dislike
Add to saved papers

Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1.

Peptides 2019 June 21
Bioactive peptides from natural sources are utilized as food supplements for disease prevention and are increasingly becoming targets for drug discovery due to their specificity, efficacy and the absence of undesirable side effects, among others. Hence, the 'SpirPep' platform was developed to facilitate the in silico-based bioactive peptide discovery of these highly sought-after biomolecules from Spirulina (Arthrospira platensis) and to select the protease (thermolysin) used for in vitro digestion. Analysis of the predicted and experimentally-derived peptides suggested that they were mainly involved in ACE inhibition; thus, an ACEi assay was used to study the ACE inhibitory activity of five candidate peptides (SpirPep1-5), chosen from common peptides with multifunctional bioactivity and 100% bioactive peptide coverage, originating from phycobiliproteins. Results showed that SpirPep1 inhibited the activity of ACE with IC50 of 1.748 mM and was non-toxic to fibroblasts of African green monkey kidney and human dermal skin. The molecular docking and MD simulation analysis revealed SpirPep1 had significantly lower binding scores than others and showed greater specificity to ACE. The non-bonded interaction energy of SpirPep1 and ACE was -883 kJ/mol. The SpirPep1 indirectly bound to ACE via the ACE substrate binding sites residues (D121, E123, S516, and S517) found in natural ACE inhibitory peptides (angiotensin II and bradykinin potentiating peptides). In addition, two unreported substrate binding sites including R124 and S219 were found. These results indicate that 'SpirPep' platform could increase the success rate for natural bioactive peptide discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app