Xin-Ji-Er-Kang ameliorates kidney injury following myocardial infarction by inhibiting oxidative stress via Nrf2/HO-1 pathway in rats

Feng-Zhen Lian, Pan Cheng, Cheng-Shao Ruan, Xin-Xin Ling, Xiao-Yun Wang, Ming Pan, Mei-Ling Chen, Ai-Zong Shen, Shan Gao
Biomedicine & Pharmacotherapy 2019, 117: 109124

AIM: Cardiovascular diseases, such as coronary heart disease and myocardial infarction (MI) are currently considered as the leading causes of death and disability. The aim of the present study is to investigate the effects of Xin-Ji-Er-Kang (XJEK) on kidney injury and renal oxidative stress. In addition, the associated mechanism involved in these processes was examined in an MI model, and particularly focused on the nuclear factor erythroid 2-related factor (NRF2)/heme oxygenase-1 (HO-1) pathway.

MATERIALS AND METHODS: A total of 138 Sprague-Dawley rats were used in the present study. The control group was designated as 0 wk (n = 8). A total of 3 phases (2, 4, 6 wk) of administration were used in the sham-operated groups (sham, n = 10), MI groups (MI, n = 10), MI + XJEK groups (XJEK, n = 10) and MI + fosinopril groups (fosinopril, n = 10). Additional 10 rats were used to evaluate the infarct area. At 2, 4 or 6 wk post-MI, the hemodynamic parameters were monitored, the rats were sacrificed, then blood, heart and renal tissues were collected for furtherly analysis.

RESULTS: The results indicated that XJEK administration continuously ameliorated renal hypertrophy index, blood urea nitrogen and cystatin C concentrations. XJEK further improved post-MI cardiac function by limiting scar formation and caused a downregulation in the hemodynamic parameters at the end of 2 and 4 wk. The hemodynamic parameters were upregulated after 6 wk treatment with XJEKcompared with those noted in the MI groups. Similarly, XJEK treatment for 2 wk potentiated Nrf2 nuclear translocation and HO-1 expression and inhibited the deficiency of nuclear Nrf2 and HO-1 at 6 wk post-MI compared with that of the MI groups, indicating the attenuation of the renal oxidative stress condition. The levels of malondialdehyde and angiotensin II (Ang II) in plasma and renal tissues, as well as the levels of aldosterone, 8-hydroxydeoxyguanosine, angiotensin II type 1 receptor and NADPH Oxidase-4 in the kidney tissue significantly decreased following XJEK treatment for 6 wk. In addition, the XJEK treatment groups revealed a significant upregulation in the activity of superoxide dismutase and in the total antioxidant capacity activity compared with those noted in the corresponding MI groups.

CONCLUSION: These results demonstrated that progressive nephropathy in MI rats was associated with intrarenal activation of the renin-angiotensin-aldosterone system. Concomitantly, this process was associated with oxidative stress and impaired Nrf2 activation. The improvement in the severity of nephropathy by XJEK in this model may be associated with the reversal of these abnormalities.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"