Add like
Add dislike
Add to saved papers

Isolation and characterization of a novel temperate bacteriophage from gut-associated Escherichia within black soldier fly larvae (Hermetia illucens L. [Diptera: Stratiomyidae]).

Archives of Virology 2019 September
To gain insight into the presence and nature of prophages in the black soldier fly (BSF; Hermetia illucens L. [Diptera: Stratiomyidae]) gut, we isolated and characterized a novel, temperate Escherichia bacteriophage designated vB_EcoS_PHB10 (PHB10). Electron microscopy analysis revealed that phage PHB10 has a long, flexible, non-contractile tail and belongs to the family Siphoviridae. The phage was found to be stable over a wide range of temperatures (4-37 °C) and pH values (pH 5-9), and it lysed two out of 13 Escherichia strains tested. The genome of PHB10 contains genes encoding a putative transcriptional regulator and an integrase, and it shows a high degree of similarity to a region of the Enterobacter cloacae MBRL1077 genome. Induction experiments revealed that phage PHB10 could be induced by different gut substrates, suggesting that diet might be a potential regulator of lytic/lysogenic switches in commensal lysogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app