Add like
Add dislike
Add to saved papers

Long-term Western diet intake leads to dysregulated bile acid signaling and dermatitis with Th2 and Th17 pathway features in mice.

BACKGROUND: Dietary interventions are implicated in the development of atopic dermatitis, psoriasis, and acne.

OBJECTIVE: To investigate the effect of diet and the bile acid (BA) receptors, such as TGR5 (Takeda G protein receptor 5) and S1PR2 (sphingosine-1-phosphate receptor 2) in the development of dermatitis.

METHODS: C57BL/6 mice were fed a control diet (CD) or Western diet (WD) since weaning until they were 10 months old followed by analyzing histology, gene expression, and BA profiling.

RESULTS: Mice developed dermatitis as they aged and the incidence was higher in females than males. Additionally, WD intake substantially increased the incidence of dermatitis. Cutaneous antimicrobial peptide genesS100A8, S100A9, and Defb4 were reduced in WD-fed mice, but increased when mice developed skin lesions. In addition, Tgr5 and TGR5-regulated Dio2 and Nos3 were reduced in WD intake but induced in dermatitic lesions. Trpa1 and Trpv1, which mediate itch, were also increased in dermatitic lesions. The expression of S1pr2 and genes encoding sphingosine kinases, S1P phosphatases, binding protein, and transporter were all reduced by WD intake but elevated in dermatitic lesions. Furthermore, dermatitis development increased total cutaneous BA with an altered profile, which may change TGR5 and S1PR2 activity. Moreover, supplementation with BA sequestrant cholestyramine reduced epidermal thickening as well as cutaneous inflammatory cytokines.

CONCLUSION: In summary, activation of TGR5 and S1PR2, which regulate itch, keratinocyte proliferation, metabolism, and inflammation, may contribute to WD-exacerbated dermatitis with Th2 and Th17 features. In addition, elevated total BA play a significant role in inducing dermatitis and cutaneous inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app