Add like
Add dislike
Add to saved papers

Alterations in protein expression patterns of spinal peroxisome proliferator-activated receptors after spinal cord injury.

Objectives : Peroxisome proliferator-activated receptors (PPARs) control wound healing processes in damaged tissues. PPAR agonists have neuroprotective effects in spinal cord injury (SCI); however, isotype-specific roles of PPARs are not well understood. Therefore, we evaluated protein expression changes for three isotypes of PPARs at different time points and locations relative to the epicenter after SCI in rats. Methods : A 10-g rod was dropped on the spinal cord which located at the T10 vertebra of rats from a height of 6.25, 12.5, or 50 mm using New York University impactor. We collected the spinal cord at 6, 12, 24, and 72 h and 1, 3, and 5 weeks after SCI. The protein expression of PPARs was analyzed using western blot. Results : The protein expression of PPAR-α declined gradually up to 5 weeks at the epicenter. PPAR-β/δ expression increased from 3 days to 5 weeks at the caudal region, but decreased at the epicenter in the severe injury group. PPAR-γ expression increased significantly at all regions in all three injury groups up to 5 weeks after SCI and increased to a greater extent in the severe injury group. In addition, PPAR-β/δ controlled protein expression of PPAR-α positively, and -γ negatively. Conclusions : The present results suggest that different PPAR isotypes have varied protein expression patterns at the epicenter and in adjacent regions after SCI. Our results suggest that PPARs may have overlapping but distinct roles. These findings will be useful for further studies investigating PPARs in neurological disorders including SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app