Add like
Add dislike
Add to saved papers

Angle-insensitive dual-functional resonators combining cavity mode resonance and magnetic resonance.

Optics Letters 2019 June 16
An angle-insensitive dual-functional resonator composed of a compound metallic grating is proposed and characterized numerically. The resonator exhibits different response characteristics for TE and TM polarization, thus enabling two functions, corresponding to a high-sensitivity sensor and a low Q-factor absorber. For TE polarization, the Q-factor, refractive index sensitivity, and figure of merit of the resonator can reach 283.4, 2577.6 nm/RIU, and 181.5  RIU-1 , respectively, due to the excitation of cavity mode resonance. For TM polarization, the resonator can be regarded as an absorber with high absorptivity (>97%) based on magnetic resonance. Accordingly, these two mechanisms can be explained well by the waveguide theory and inductor-capacitor circuit model. The electromagnetic fields in the system can be selectively concentrated in the cavity or slit by simply adjusting the polarization angle, exhibiting unique energy localization characteristics. The resonator can also exhibit polarization-sensitive behavior due to the different bandwidths for the same wavelength. This simple structure provides a good paradigm for designing high-performance multi-functional devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app