Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

GBA1-associated parkinsonism: new insights and therapeutic opportunities.

PURPOSE OF REVIEW: GBA1 mutations, which result in the lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease and Dementia with Lewy Bodies (DLB). The pathogenesis of this association is not fully understood, but further elucidation of this link could lead to new therapeutic options.

RECENT FINDINGS: The characteristic clinical phenotype of GBA1-PD resembles sporadic Parkinson disease, but with an earlier onset and more severe course. Many different GBA1 mutations increase the risk of Parkinson disease, some primarily detected in specific populations. Glucocerebrosidase deficiency appears to be associated with increased α-synuclein aggregation and accumulation, mitochondrial dysfunction because of impaired autophagy, and increased endoplasmic reticulum stress.

SUMMARY: As our understanding of GBA1-associated Parkinson disease increases, new treatment opportunities emerge. MicroRNA profiles are providing examples of both up-regulated and down-regulated proteins related to GBA1 and may provide new therapeutic targets. Chaperone therapy, directed at either misfolded glucocerebrosidase or α-synuclein aggregation, is currently under development and there are several early clinical trials ongoing. Substrate reduction therapy, aimed at lowering the accumulation of metabolic by-products, especially glucosylsphingosine, is also being explored. Basic science insights from the rare disorder Gaucher disease are serving to catapult drug discovery for parkinsonism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app