Add like
Add dislike
Add to saved papers

Dynamical Clustering and band formation of particles in a Marangoni vortexing droplet.

Drying a droplet containing microparticles results in the deposition of particles in various patterns, including the so-called "coffee-ring" pattern. The particle deposition is dependent on the internal flow dynamics, such as the capillary flow and Marangoni vortex (MV), of the droplet. Particle migration and self-assembly on a substrate are interesting phenomena that have critical implications in many applications such as inkjet printing, coating, and many other droplet-based industrial processes. In this work, we observed the formation of bands of particles in a rotating MV during the evaporation of a water droplet containing particles. We investigated the mechanism underlying the formation of banded MV caused by capillary meniscus forces between two particles near the air-liquid interface. In particular, we show that the banded MV can be manipulated by tuning the surfactant concentration and particle concentration. Our findings would provide a new direction in understanding the particle deposition pattern of a colloidal droplet.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app