Add like
Add dislike
Add to saved papers

Ghrelin Fights Against Titanium Particle-Induced Inflammatory Osteolysis Through Activation of β-Catenin Signaling Pathway.

Inflammation 2019 June 5
Aseptic loosening is a major complication of prosthetic joint surgery, in which exaggerated inflammation and impaired osteoblastogenesis are detected. Ghrelin is a recently discovered neuropeptide that is closely associated with inflammatory conditions and bone regeneration. Here, we report that titanium particles inhibited ghrelin expression in MC3T3-E1 cells. Furthermore, exogenous ghrelin effectively inhibited titanium particle-induced inflammation in vitro by interacting with its receptor GHSR1a; as an inhibitor of GHSR1a, Dlys repressed the function of ghrelin. Moreover, ghrelin attenuated the impairment of osteoblastogenesis and the exaggeration of osteolysis induced by titanium particles. Furthermore, the protective role of ghrelin in aseptic loosening might be associated with the Wnt/β-catenin signaling pathway. Collectively, these findings suggest that ghrelin might be a potential therapeutic target for wear-debris-induced inflammation and osteolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app