Add like
Add dislike
Add to saved papers

Seasonal Mixing-Driven System in Estuarine-Coastal Zone Triggers an Ecological Shift in Bacterial Assemblages Involved in Phytoplankton-Derived DMSP Degradation.

Microbial Ecology 2019 May 30
The coastal zone has distinguishable but tightly connected ecosystems from rivers to the ocean and globally contributes to nutrient cycling including phytoplankton-derived organic matter. Particularly, bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) degradation have been recently evaluated by using advanced sequencing technologies to understand their role in the marine microbial food web. Here, we surveyed the bacterial diversity and community composition under seasonal water mixing in the bay of Gwangyang (GW), a semi-enclosed estuary at the southern tip of the Korea Peninsula. We detected phylogenetic dissimilarities among season-specific habitats in GW and their specific bacterial taxa. Additionally, bacterial contribution to degradation of phytoplankton-derived DMSP from estuarine to coastal waters at euphotic depths in GW was investigated as the presence or absence of DMSP demethylation gene, encoded by dmdA. Among the operational taxonomic units (OTUs) in GW bacterial communities, the most dominant and ubiquitous OTU1 was affiliated with the SAR11 clade (SAR11-OTU). The population dynamics of SAR11-OTU in dmdA-detected GW waters suggest that water mass mixing plays a major role in shaping bacterial communities involved in phytoplankton-derived DMSP demethylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app