Add like
Add dislike
Add to saved papers

Abiotic and biotic processes of diclofenac in enriched nitrifying sludge: Kinetics, transformation products and reactions.

Diclofenac (DCF), as an emerging contaminant in aquatic environments, has sparked increasing concerns about its impact on the environment. Nitrification in wastewater treatment processing has removed DCF to a large extent. However, the removal characteristics and mechanisms of DCF in the nitrification process are still poorly understood. In this study, enriched nitrifying sludge was used to investigate the transformation of DCF during the nitrification process. Elimination of DCF caused by volatilization, hydrolyzation and adsorption was limited. Abiotic nitration removal was confirmed as significant in enriched nitrifying sludge at a low pH and high nitrite concentration. Free nitrite acid was proposed as the reaction species participating in the DCF transformation process, and a regression equation was developed to predict the contribution of abiotic nitration on DCF removal in enriched nitrifying sludge. By slowly and continuously adding an ammonia stock solution and controlling the pH, we avoided the effect of abiotic nitration removal, and DCF biodegradation was positively correlated to specific ammonium oxidation rates (SAORs). The removal of DCF fit the first order kinetic model (R2  = 0.8285, p < 0.05) with an SAOR of 0.25 mg NH4 + -N/(gMLSS·min). The high removal rate constant of k (0.1286 L/(gMLSS·h)) and short half-life (2.48 h) revealed the strong capability of nitrifying bacteria to transform DCF. Nine DCF transformation products were identified and three of them were quantified in the transformation process. The formation of kinetic profile 4-OH-DCF, 5-OH-DCF and DCF-Benzoic acid (DCF-BA) implied that hydroxylation may be the first reaction of DCF and DCF-BA may be a terminal product that resists further degradation. The postulated reactions concerning the transformation of DCF were hydroxylation, lactam formation and oxidation. Accordingly, a detailed degradation pathway was presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app