OPEN IN READ APP
JOURNAL ARTICLE

Body configuration as a predictor of centre of mass displacement in a forward reactive step

Daniel P Armstrong, Steven P Pretty, Tyler B Weaver, Andrew C Laing
Human Movement Science 2019 May 22, 66: 292-300
31128339
In balance perturbations that elicit backwards reactive steps, body configuration at stepping contact is related to likelihood of balance recovery. However, less is known about the relationship between body configuration (at stepping contact) and underlying centre of mass (COM) dynamics during dynamic perturbations requiring a forward reactive step. Accordingly, the primary objective of this study was to characterize the potential relationships between body configuration and COM displacement during simulated trips. Towards determining the robustness of these relationships, trips were simulated in both baseline and increased passive joint stiffness conditions. Sixteen healthy adults participated in this study. Trips were simulated using a tether release paradigm where participants were suddenly released, necessitating a forward step (onto a force plate) to recover their balance. Trials were performed in a baseline unconstrained condition, and in a 'corset' condition to increase passive stiffness of the trunk and hips. In all trials, whole body kinematics and kinetics were collected. Multiple linear regression models were run to assess the relationship of body angles to COM displacement in both the anteroposterior (AP) and mediolateral (ML) planes. Regression models showed a significant association of sagittal plane body configuration to both COM displacement at stepping contact and maximum COM displacement in the AP plane. Across models, the strongest predictor was the trail leg angle. Associations were stronger in the increased passive stiffness condition (average R2  = 0.366) compared to the baseline condition (average R2  = 0.266). Poor association of body configuration to COM displacement was found in the ML plane. The significant associations observed between body configuration and COM dynamics in simulated trips supports the potential downstream application of these models in identifying individuals with impaired balance control and increased fall risk.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
31128339
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"