Add like
Add dislike
Add to saved papers

Collection and identification of an unknown component from Eugenia uniflora essential oil exploiting a multidimensional preparative three-GC system employing apolar, mid-polar and ionic liquid stationary phases.

The present research deals with the collection and structural elucidation of an unknown component, accounting for about 35% of the essential oil obtained upon distillation of the leaves of Eugenia uniflora L., harvested during summer (January, 2017) in Paraná State (Southern Brazil). A multidimensional gas chromatographic preparative system, based on the coupling of three GC systems equipped with apolar, PEG and ionic liquid-based stationary phases, was successfully applied for the isolation of the chromatographic band relative to the unknown molecule. The use of wide-bore columns allowed for an increased sample capacity compared to conventional micro-bore columns, thus the injection of a neat sample was feasible, greatly reducing the total collection time. A higher chromatographic efficiency was afforded by the use of a multidimensional approach in the heart-cut mode, exploiting the different selectivity of three stationary phases, which ensured the attainment of a highly pure fraction. In only five runs, more than 3 milligrams were collected, with an average purity greater then 95%. Finally, the unknown component was subjected to nuclear magnetic resonance spectroscopy, mass spectrometry and condensed phase Fourier-transform infrared spectroscopy, leading to the identification of 6-ethenyl-6-methyl-3,5-di(prop-1-en-2-yl)cyclohex-2-en-1-one. The presented approach has been demonstrated to be effective for the isolation and structural elucidation of unknown molecules in complex samples, which will allow for further in-depth studies, like biological evaluation or pharmacological tests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app