Add like
Add dislike
Add to saved papers

Human CYP3A4-mediated toxification of the pyrrolizidine alkaloid lasiocarpine.

Pyrrolizidine alkaloids (PA) are widely distributed phytotoxins contaminating food and feed. Hepatic enzymes are considered to bioactivate PA. Previous studies showed differences in the metabolism rate in liver homogenates of different species. Thus, uncertainty remains with respect to the relevance of human metabolism. Our study aimed to analyze whether the PA representative lasiocarpine is toxified by human cytochrome P450 (CYP) enzymes. We compared the metabolic elimination of lasiocarpine in the presence of rat and human S9 fractions and liver microsomes. Experiments with the potent CYP3A/Cyp3a inhibitor ketoconazole and supersomes containing individual human and rat CYPs revealed that enzymes of the CYP3A/Cyp3a family of both species are of major relevance for lasiocarpine metabolism. To assess if metabolism by human CYP3A4 results in a toxification of lasiocarpine we performed experiments with V79 cells. γH2AX and micronuclei formation were analyzed as endpoints for genotoxicity. No effects were observed in the wildtype cells, which lack CYP activity. By contrast, a V79 clone engineered for expression of human CYP3A4 showed concentration-dependent γH2AX and micronucleus formation. Concluding, our results showed the CYP3A4-dependent formation of genotoxic metabolites of lasiocarpine. The results confirm previous data indicating the need to include metabolism of PA for human risk assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app