Add like
Add dislike
Add to saved papers

Exposure to 17α-ethinyl estradiol during early pregnancy affects fetal growth and survival in mice.

17α-ethinyl estradiol (EE2) is a synthetic compound widely used in the generation of contraceptive pills. EE2 is present in the urine of women taking contraceptives and its presence has been confirmed at increasing concentrations contaminating rivers all over the world. Because of this cycle, it can entry the human food chain when watering plants. A negative influence of EE2 on fertility and reproductive capacity of wildlife was already suggested. The short-term impact of exposure to contaminating EE2 on pregnancy outcome has not been addressed. Pregnant mice were exposed to either 0.005 μg (concentrations found in water) or 5 μg EE2/kg (contraceptive dose) body weight/day from gestation day 1-7 by oral gavage. Control mice received a 0.1% ethanol solution. High frequency ultrasound imaging was used to follow-up fetal and placental growth in vivo. Doppler measurements were utilized to analyze blood flow parameters in uterine and umbilical arteries. Mice were sacrificed at gd5, 10, and 14. We show that most fetuses of mothers exposed to the high EE2 dose die intrauterine at gd10, with implantation sizes beginning to be smaller already at gd8. Mothers exposed to the low EE2 dose show an impaired remodeling of the spiral arteries, a higher placental weight and pups that are large for gestational age. The insulin-like growth factor system that regulates fetal and placental growth and development is affected by the EE2 treatment. Our results show that a short-term exposure to EE2 during early pregnancy has severe consequences for fetal growth and survival depending on the dose. Exposition to synthetic estrogens affects placenta growth and angiogenesis. These findings urge to the study of mechanisms dysregulated upon environmental exposition to estrogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app