Add like
Add dislike
Add to saved papers

Apparent synonymous mutation F9 c.87A>G causes secretion failure by in-frame mutation with aberrant splicing.

INTRODUCTION: Hemophilia B is an X-linked recessive bleeding disorder caused by coagulation factor IX (FIX) gene (F9) mutations. Several F9 synonymous mutations have been known to cause hemophilia B; however, the deleterious mechanisms underlying the development of hemophilia B have not been completely understood. To elucidate the molecular pathogenesis causing hemophilia B, we investigated the synonymous F9 mutation: c.87A>G, p.(Thr29=).

MATERIALS AND METHODS: The influence of F9 c.87A>G on mRNA splicing was analyzed by exon-trap assay and in silico prediction. We prepared FIX expression vectors using mutant F9 cDNA and transfected HepG2 cells to investigate intracellular transport and extracellular secretion of FIX. Intracellular kinetics of the expressed FIX was examined by treatment with the proteasome inhibitor MG132.

RESULTS: Exon-trap analysis revealed that F9 c.87A>G resulted in almost (99.1%) aberrant splicing (r.83_88del). In silico analysis predicted that F9 c.87A>G influenced the splicing pattern by generating an available aberrant 5' splice site. The aberrant F9 mRNA (r.83_88del) was translated to a mutant FIX p.Cys28_Val30delinsPhe with an in-frame mutation at the signal peptide cleavage site. Simultaneously, a small amount (0.9%) of mutant F9 r.87A>G translating into WT FIX p.Thr29 = was also observed. The mutant FIX was abnormally retained in the endoplasmic reticulum (ER) and was not extracellularly secreted. It appeared to be intracellularly degraded via proteasome-dependent degradation machinery.

CONCLUSION: F9 c.87A>G was found to cause abnormal mRNA splicing, r.83_88del, and produce the mutant FIX p.Cys28_Val30delinsPhe. The mutant FIX is an abnormal protein with extracellular secretory defects and is intracellularly eliminated via proteasome-dependent ER-associated degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app