Add like
Add dislike
Add to saved papers

Evolutionary couplings of amino acid residues reveal structure and function of bacterial signaling proteins.

The genomic era along with major advances in high-throughput sequencing technology has led to a rapid expansion of the genomic and consequently the protein sequence space. Bacterial extracytoplasmic function sigma factors have emerged as an important group of signaling proteins in bacteria involved in many regulatory decisions, most notably the adaptation to cell envelope stress. Their wide prevalence and amplification among bacterial genomes has led to sub-group classification and the realization of diverse signaling mechanisms. Mathematical frameworks have been developed to utilize extensive protein sequence alignments to extract co-evolutionary signals of interaction. This has proven useful in a number of different biological fields, including de novo structure prediction, protein-protein partner identification and the elucidation of alternative protein conformations for signal proteins, to name a few. The mathematical tools, commonly referred to under the name 'Direct Coupling Analysis' have now been applied to deduce molecular mechanisms of activation for sub-groups of extracytoplasmic sigma factors adding to previous successes on bacterial two-component signaling proteins. The amplification of signal transduction protein genes in bacterial genomes made them the first to be amenable to this approach but the sequences are available now to aid the molecular microbiologist, no matter their protein pathway of interest. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app