Add like
Add dislike
Add to saved papers

The LIM protein Ajuba/SP1 complex forms a feed forward loop to induce SP1 target genes and promote pancreatic cancer cell proliferation.

BACKGROUND: The aim of this study is to explore the molecular mechanism of the LIM protein Ajuba and the transcription factor SP1 in the pathogenesis and progression of PDAC. Ajuba is a newly defined transcriptional co-regulator and plays important role in various cancer development, while SP1 is a classic transcription factor, and is closely related with a variety of gene expression and cancer development including PDAC.

METHODS: The expression of Ajuba and SP1 in PDAC tissues was detected by immunohistochemistry (IHC), and the correlation between expression level and clinical prognosis of Ajuba and SP1 was extensively analyzed using online tools. The interaction between Ajuba and SP1 was examined by co-immunoprecipitation (co-IP) and GST-pulldown assays. Stable cell lines were established via lentiviral infection, and was examined by qRT-PCR and western blot assays. The effects of Ajuba/SP1 on PDAC cell proliferation were examined using CCK8 and colony formation assays. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were employed to examine the transcription activity.

RESULTS: The expression level (protein and mRNA) of Ajuba and SP1 was elevated in PDAC tissues and was positively correlated; patients with high Ajuba and SP1 expression had a poor prognosis. Mechanistically, Ajuba binds to the C-terminus of SP1 and functions as a co-activator to enhance SP1 gene expression and promote cell proliferation; the promoter of Ajuba contains functional SP1 responsive elements and Ajuba itself is a target gene of SP1.

CONCLUSION: Ajuba functions as a co-activator of SP1 to induce its target gene, and that Ajuba itself is a target genes of SP1. Ajuba/SP1 complex could form a feed forward loop to drive SP1 target gene transcription and promote cell proliferation of pancreatic cancer cells. Ajuba and SP1 might be biomarkers for PDAC diagnostics, prognosis and targets for new therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app