Add like
Add dislike
Add to saved papers

Facile and scalable fabrication of self-assembled Cu architecture with superior antioxidative properties and improved sinterability as a conductive ink for flexible electronics.

Nanotechnology 2019 May 18
The inherent susceptibility to oxidation and poor sinterability significantly limit the practical application of Cu-based conductive inks. Most methodologies employed for the inks like organic polymer coatings and inorganic metal deposition are generally ineffective. Herein, we report the design of a novel hierarchical Cu architecture to simultaneously improve the antioxidative and sinterability via a self-passivation mechanism and loose interior structures. The hierarchical Cu architecture was prepared using copper hydroxide, L-ascorbic acid, and polyvinylpyrrolidone in aqueous solution; 40 g Cu were prepared in a scale-up experiment. A possible growth mechanism is proposed, involving the Cu2O-templated and mediated nucleation and growth of Cu nanocrystals, followed by the PVP-directed electrostatic self-assembly of Cu nanocrystals. The synthesized Cu shows high oxidation resistance after stored in ambient environment for 90 days by self-passivation, wherein the dense oxidized external layer prevented further oxidation of Cu, unlike other antioxidative strategies. In addition, the structure became 2D flake after a simple ball-milling for 10 min of 2000r, thus forming a good conductive network at the temperature of 180℃. Importantly, no obvious decline in the electrical performance after severe surface oxidation. Although the structure can't offer excellent conductive performance, but it proposes a new solution for the balance of antioxidative capabilities and good sinterability in Cu nanomaterials, thus facilitating greater utilization of Cu-based conductive inks for emerging flexible electronic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app