Add like
Add dislike
Add to saved papers

Experimental and Theoretical Study on the Microparticle Trapping and Release in a Deformable Nano-Sieve Channel.

Nanotechnology 2019 May 18
Deformable microfluidics may be potentially used in cell manipulation, optical sensing, and imaging applications, and have drawn considerable scientific interests in the recent past. The excellent tunability of deformable microfluidic devices can provide controllable capture, deposition, and target release. We demonstrated a one-dimensional nano-sieve device to capture microparticles from suspensions. Size-selective capturing and release of micro- and nanoparticles was achieved by simply adjusting the flow rate. Almost all the microparticles were trapped in the nano-sieve device at a flow rate of 20 µL/min. Increasing the flow rate induces a hydrodynamic deformation of the top part of the compliant device and allows most of the microparticles to pass through the channel. We also established a theoretical model based on computational fluid dynamics to reveal the relationship of the hydrodynamically induced deformation, channel dimensions, and capture efficiency that supports and rationalizes the experimental data. We have predicted the capturing efficiency of micro-and nanoparticles in a nano-sieve device with various geometries and flow rates. This study may be important to the optimization of next generation deformable microfluidics for efficient micro- and nanostructure manipulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app