Add like
Add dislike
Add to saved papers

Multiple airborne allergen-induced eosinophilic chronic rhinosinusitis murine model.

PURPOSE: Several murine models have been established to mimic human eosinophilic chronic rhinosinusitis (ECRS). However, in most of these models, ECRS was induced using ovalbumin, which does not cause sinusitis in humans. Thus, we aimed to develop a more clinically relevant murine model of ECRS using multiple airborne allergens. We also investigated the effects of exposure duration of the allergens on ECRS development.

METHODS: C57BL/6 mice were intranasally administered multiple airborne allergens (house dust mite, Aspergillus fumigatus, Alternaria alternata, and protease from Staphylococcus aureus) three times weekly for 4, 8, 12, and 16 consecutive weeks. Histopathological changes, the levels of cytokines and chemokines in the nasal lavage fluid, and immune cells of the blood and spleen were analyzed.

RESULTS: The mice administered multiple allergens showed significantly increased eosinophil infiltration, epithelial thickening and disruption, and subepithelial collagen deposition from 8 weeks compared to the control group. Goblet cell hyperplasia, polyp-like lesions, and blood eosinophils, as well as the levels of interleukin-5 and eotaxin in the nasal lavage fluid were considerably increased in the ECRS group from 12 weeks compared to those of controls. Instillation of allergens for 16 weeks exacerbated the eosinophil infiltration and eotaxin increase in the nasal lavage fluid.

CONCLUSIONS: We successfully established a new murine model of ECRS using more clinically relevant multiple airborne allergens. Prolonged exposure to airborne allergens for 12 weeks or more, corresponding to the definition of human ECRS, strongly induced eosinophil infiltration as well as epithelial remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app