Add like
Add dislike
Add to saved papers

The novel microRNA hsa-miR-CHA1 regulates cell proliferation and apoptosis in human lung cancer by targeting XIAP.

OBJECTIVES: MicroRNAs have critical roles in cancer development by regulating the expression of oncogenes or tumor suppressor genes. We identified and characterized a novel miRNA, miR-CHA1, in human lung cancer cells. The aim of this study was to investigate its novel function in human lung cancer by targeting XIAP.

MATERIAL AND METHODS: Novel miRNA cloning, Real-time qRT-PCR, western blotting, dual luciferase assay, miRNA transfection, proliferation and apoptosis assay were carried on human lung cancer cell line A549. Fifteen paired NSCLC tissues and noncancerous lung tissues were collected. In vivo xenograft assay was performed.

RESULTS: Expression of miR-CHA1 was downregulated in human lung cancer cell lines and tissues compared with normal cells and tissues. We identified a putative target gene, XIAP, whose expression was regulated by miR-CHA1 overexpression. XIAP is an inhibitor of apoptosis that represses the activation of caspase 3 and 9. XIAP mRNA and protein levels were directly suppressed by miR-CHA1. XIAP has an important role in carcinogenesis, and previous studies suggest that it may regulate cell survival and proliferation by its anti-apoptotic ability.

CONCLUSION: Taken together, miR-CHA1 inhibited cell proliferation and induced apoptosis in vitro and in vivo by targeting XIAP. These data can be applied to identify novel therapeutic targets for lung cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app