Add like
Add dislike
Add to saved papers

β -Lapachone Regulates Obesity through Modulating Thermogenesis in Brown Adipose Tissue and Adipocytes: Role of AMPK Signaling Pathway.

Activation of brown adipose tissue (BAT) has been proposed as a promising target against obesity due to its increased capacity for thermogenesis. In this study, we explored the effect of β -Lapachone ( β L), a compound obtained from the bark of the lapacho tree, against obesity. In vivo administration of β L into either high fat diet (HFD)-induced obese C57BL6 mice and genetically obese Lepr -∕- mice prevented body weight gain, which was associated with tissue weight loss of white adipose tissue (WAT). In addition, β L elevated thermogenic proteins including uncoupling protein 1 (UCP1) and mitochondrial count in BAT and human adipose tissue-derived mesenchymal stem cells (hAMSCs). β L also induced AMP-activated protein kinase (AMPK) phosphorylation, subsequent upregulation of acetyl-CoA carboxylase (ACC) and UCP1, and these effects were diminished by AMPK inhibitor compound C, suggesting that AMPK underlies the effects of β L. Mitogen-activated protein kinase pathways participated in the thermogenesis of β L, specifically p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were activated by β L treatment in hAMSCs. Additionally, inhibitors of p38/JNK/ERK1/2 abrogated the activity of β L. Taken together, β L exerts anti-obese effects by inducing thermogenesis mediated by AMPK signaling pathway, suggesting that β L may have a potential therapeutic implication of obesity. Taken together, β L exerts anti-obese effects by not only inducing thermogenesis on brown adipocytes but also inducing the browning of white adipocytes. The anti-obese effect of β L is mediated by AMPK signaling pathway, suggesting that β L may have potential therapeutic implication of obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app