Add like
Add dislike
Add to saved papers

3.5-mJ 150-fs Fe:ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics.

Optics Letters 2019 May 16
We report on entering a new era of mid-IR femtosecond lasers based on amplification in a relatively new gain chalcogenide medium, Fe:ZnSe. Our hybrid all-solid-state laser system is based on direct pulse amplification of femtosecond seed from three-stage AGS-based-optical parametric amplification (OPA) in a Fe:ZnSe laser crystal optically pumped by a Cr:Yb:Ho:YSGG Q-switched nanosecond laser. The development of the pump source with output energy up to 90 mJ operating at a 10 Hz repetition rate regime and highly efficient grating compressor (80%) provides 3.5-mJ 150-fs femtosecond pulses centered at 4.4 μm. Diode-pumped Er:YAG/Er:YLF lasers make it possible to increase the beam quality and repetition rate of the proposed laser system up to 100 Hz. Focusing such a laser radiation into the ∼3λ beam diameter allows us to reach a focus laser intensity up to 1016   W/cm2 which is only an order of magnitude lower than a relativistic intensity of 1017   W/cm2 and enough to drive strong nonlinear optics in mid-IR. We show as a proof-of-principle experiment the generation of four-octave spanning (from 350 nm up to 5.5 μm) supercontinuum in xenon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app