CASE REPORTS
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of Different 980-nm Diode Laser Parameters in Hepatectomy.

BACKGROUND AND OBJECTIVE: Despite the successful application of laser in animal experiments and clinics, the adjustment of laser parameters during surgery is still unclear. This study aimed to investigate the effect of different 980-nm diode laser parameters in hepatectomy. This could provide a clear protocol for using 980-nm diode laser in hepatectomy.

STUDY DESIGN/MATERIALS AND METHODS: In total, 48 Sprague-Dawley rats were used to explore the effects of different 980-nm diode laser parameters in hepatectomy, by setting different parameter combinations. The rats were randomly divided into eight groups, including the continuous wave group and quasi-continuous wave group. The effects were assessed in terms of liver resection speed, extent of intraoperative bleeding, and thermal damage.

RESULTS: In the quasi-continuous wave group, there was a significant difference in resection speed at the different laser parameters (P < 0.001); however, there was no significant difference in intraoperative bleeding and thermal damage. In the continuous wave group, there was a significant difference in resection speed, intraoperative bleeding, and thermal damage at different parameters.

CONCLUSION: The study showed that the average power determined hemostasis efficiency and thermal damage, and peak power determined the liver resection speed, whereas the pulse width and repetition frequency are not independent factors. When using 980-nm diode laser in hepatectomy, the average power should be decreased to prove hemostasis efficiency in delicate operations, and the peak power should be decreased to accelerate the procedure without worsening thermal damage. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app