Add like
Add dislike
Add to saved papers

Comparative investigation of the optical spectroscopic and thermal effect in Nd 3+ -doped nanoparticles.

Nanoscale 2019 May 16
Nd3+-doped nanoparticles involving 808 nm excitation hold great promise in various biomedical applications, such as bioimaging, biodetection, theranostics and optogenetics. Here we present the synthesis and characterization of core-multishell Nd3+-doped nanoparticles displaying excellent optical properties. We systematically studied the influence of doping concentration, nanostructure design, excitation wavelength and size effect on the upconversion luminescence of Nd3+-doped nanoparticles. Remarkably, the emission intensity of optimized nanoparticles with 808 nm excitation is three times higher than the emission intensity of those with 980 nm excitation. Surprisingly, the optical profiles of Nd3+-doped nanoparticles strongly depend on the excitation wavelengths. The dominant effect responsible for the emission intensity difference and the energy transfer mechanism upon different excitation wavelengths are investigated. Interestingly, the heavily Nd3+-doped nanoparticles not only display efficient upconversion luminescence, but also are able to convert the excitation source to heat under a single 808 nm excitation source. Importantly, these efforts will lead to Nd3+-doped nanoparticles with unprecedented optical and thermal properties that will have broad utility in fundamental research and technological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app