Add like
Add dislike
Add to saved papers

Correlation between the translational and rotational diffusion of rod-shaped nanocargo on a lipid membrane revealed by single-particle tracking.

Nanoscale 2019 May 16
Revealing the diffusion dynamics of nanoparticles on a lipid membrane plays an important role in a better understanding of the cellular translocation process and provides a theoretical basis for the rational design of delivery cargo. However, most studies focus on the investigation of the positional fluctuations of the nanocargo on the fluidic membrane, ignoring the contribution from orientational variation. In particular, less is known about the correlation between the rotational freedom and translational movability of a particle surveying a lipid membrane. In this work, the ligand-receptor interaction (by using streptavidin (SA) and biotin as the model)-modulated diffusion dynamics of rod-shaped nanocargo (i.e., gold nanorods, GNRs) on an artificial lipid membrane was explored with dark-field (DF) optical microscopy. A correlation between translational and rotational motion was observed whereby the freedom of rotational motion could be released intermittently. The conformational entropy release is usually associated with the promotion of translational diffusion, where large step surveying on the lipid membrane takes place subsequently. These new messages might afford valuable kinetic information for the design of nanocargo with appropriate surface functionality to achieve satisfactory cellular uptake efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app