Add like
Add dislike
Add to saved papers

Inhibition of pyruvate dehydrogenase kinase enhances the antitumor efficacy of oncolytic reovirus.

Cancer Research 2019 May 15
Oncolytic viruses (OV) such as reovirus preferentially infect and kill cancer cells. Thus, the mechanisms that dictate the susceptibility of cancer cells to OV-induced cytotoxicity hold the key to their success in clinics. Here we investigated whether cancer cell metabolism defines its susceptibility to OV, and if OV-induced metabolic perturbations can be therapeutically targeted. Using mass spectrometry-based metabolomics and extracellular flux analysis on a panel of cancer cell lines with varying degrees of susceptibility to reovirus, we found that OV-induced changes in central energy metabolism, pyruvate metabolism, and oxidative stress correlate with their susceptibility to reovirus. In particular, reovirus infection accentuated Warburg-like metabolic perturbations in cell lines relatively resistant to oncolysis. These metabolic changes were facilitated by oxidative stress-induced inhibitory phosphorylation of pyruvate dehydrogenase (PDH) that impaired the routing of pyruvate into the TCA cycle and established a metabolic state unsupportive of OV replication. From the therapeutic perspective, reactivation of PDH in cancer cells that were weakly sensitive for reovirus, either through PDH kinase (PDK) inhibitors dichloroacetate and AZD7545 or shRNA-specific depletion of PDK1, enhanced the efficacy of reovirus-induced oncolysis in vitro and in vivo. These findings identify targeted metabolic reprogramming as a possible combination strategy to enhance the antitumour effects of OV in clinics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app