Add like
Add dislike
Add to saved papers

Nitrogen-Doped Graphene-Encapsulated Nickel-Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction.

Small 2019 May 15
Development of high-performance and low-cost nonprecious metal electrocatalysts is critical for eco-friendly hydrogen production through electrolysis. Herein, a novel nanoflower-like electrocatalyst comprising few-layer nitrogen-doped graphene-encapsulated nickel-copper alloy directly on a porous nitrogen-doped graphic carbon framework (denoted as Nix Cuy @ NG-NC) is successfully synthesized using a facile and scalable method through calcinating the carbon, copper, and nickel hydroxy carbonate composite under inert atmosphere. The introduction of Cu can effectively modulate the morphologies and hydrogen evolution reaction (HER) performance. Moreover, the calcination temperature is an important factor to tune the thickness of graphene layers of the Nix Cuy @ NG-NC composites and the associated electrocatalytic performance. Due to the collective effects including unique porous flowered architecture and the synergetic effect between the bimetallic alloy core and graphene shell, the Ni3 Cu1 @ NG-NC electrocatalyst obtained under optimized conditions exhibits highly efficient and ultrastable activity toward HER in harsh environments, i.e., a low overpotential of 122 mV to achieve a current density of 10 mA cm-2 with a low Tafel slope of 84.2 mV dec-1 in alkaline media, and a low overpotential of 95 mV to achieve a current density of 10 mA cm-2 with a low Tafel slope of 77.1 mV dec-1 in acidic electrolyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app