Add like
Add dislike
Add to saved papers

Bioinspired Polymer Nanocomposites Exhibit Giant Energy Density and High Efficiency at High Temperature.

Small 2019 May 15
Polymer dielectrics are ubiquitous in advanced electric energy storage systems. However, the relatively low operating temperature significantly menaces their widespread application at high temperatures, such as for hybrid vehicles and aerospace power electronics. Spider silk, a natural nanocomposite comprised of biopolymer chains and crystal protein nanosheets combined by multiple interfacial interactions, exhibits excellent mechanical properties even at elevated temperatures. Inspired by the hierarchical nanostructure of spider silk, poly(aryl ether sulfone) is anchored to the surface of wide bandgap artificial nanosheets to prepare the nanocomposites with nanoconfinement effect. The bioinspired strategy successfully improves the mechanical and electrical performances of the nanocomposite. Owing to the structural-enabled enhancements, the nanocomposites exhibit excellent breakdown strength and electrical energy storage performance at high temperatures. In detail, giant discharged energy density (2.7 J cm-3 ) and high charge-discharge efficiency (>90%) are simultaneously achieved at 150 °C and 400 MV m-1 . Notably, under 500 MV m-1 , the discharged energy density reaches 4.2 J cm-3 , which is the record high discharged energy density among polymer-based dielectrics at 150 °C. This work demonstrates a viable strategy to design high-temperature polymer dielectrics by constructing nanoconfinement in the nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app