Add like
Add dislike
Add to saved papers

Schottky Barrier-Controlled Black Phosphorus/Perovskite Phototransistors with Ultrahigh Sensitivity and Fast Response.

Small 2019 May 15
Phototransistors are recognized as highly sensitive photodetectors owing to their high gain induced by a photogating effect. However, the response speed of a typical phototransistor is rather slow due to the long lifetime of trapped carriers in the channel. Here, a novel Schottky barrier-controlled phototransistor that shows ultrahigh sensitivity as well as a fast response speed is reported. The device is based on a channel of few-layer black phosphorous modified with a MAPbI3- x Clx perovskite layer, whose channel current is limited by the Schottky barrier at the source electrode. The photoresponse speed of the device can be tuned by changing the drain voltage, which is attributed to a field-assisted detrapping process of electrons in the perovskite layer close to the Schottky barrier. Under optimal conditions, the device exhibits a high responsivity of 106 -108 A W-1 , an ultrahigh specific detectivity up to 9 × 1013 Jones, and a response time of ≈10 ms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app