JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

N-acetylcysteine with low-dose estrogen reduces cardiac ischemia-reperfusion injury.

Myocardial damage and mitochondrial dysfunction caused by cardiac ischemia-reperfusion (I/R) injury are intensified by endogenous estrogen deprivation. Although N-acetylcysteine (NAC) exerted cardioprotective effects, its benefits when used in combination with hormone therapy are unknown. We tested the hypothesis that a combination of NAC with low-dose estrogen improves cardiometabolic function and protects cardiac mitochondria against I/R injury, to a similar extent to regular-dose estrogen treatment, in estrogen-deprived rats. Female Wistar rats had a bilateral ovariectomy (OVX) or sham operation. Twelve weeks after the operation, OVX rats were treated with regular-dose estrogen (E; 50 µg/kg/day), low-dose estrogen (e; 25 µg/kg/day), NAC (N; 100 mg/kg/day) or combined low-dose estradiol with NAC (eN) for 4 weeks (n = 6/group). Metabolic parameters, echocardiography, heart rate variability and then cardiac I/R protocol involving 30-min coronary artery ligation, followed by 120-min reperfusion, were performed. OVX rats had increased body weight, visceral fat, fasting plasma glucose, HOMA-IR index, triglycerides, cholesterol and LDL levels (P < 0.05 vs sham). Only OVX-E and OVX-eN had a similarly improved HOMA-IR index. LVEF was increased in all treatment groups, but HRV was restored only by OVX-E and OVX-eN. After I/R, myocardial infarct size was decreased in both OVX-E and OVX-eN groups. OVX-E and OVX-eN rats similarly had a reduced mitochondrial ROS level and increased mitochondrial membrane potential in the ischemic myocardium. In conclusion, combined NAC with low-dose estrogen and regular-dose estrogen therapy similarly improve cardiometabolic function, prevent cardiac mitochondrial dysfunction and reduces the infarct size in estrogen-deprived rats with cardiac I/R injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app