Add like
Add dislike
Add to saved papers

Optimization of miRNA Delivery by using a Polymeric Conjugate based on Deoxycholic Acid-Modified Polyethylenimine.

Safe and efficient delivery of microRNA (miRNA) molecules is essential for their successful transition from research to the clinic setting. In the present study, we have used a bile acid, deoxycholic acid (DA), to modify 1.8 kDa branched polyethylenimine (bPEI1.8 ) and subsequently investigated gene delivery features of the resultant conjugates (PEI-DAn ). We found significant differences between the PEI-DAn conjugates and conventional bPEIs with respect to miRNA condensation ability, buffering capacity, cellular uptake, and intracellular gene release behavior in endothelial cells (ECs) isolated from human umbilical vein (HUVECs). Changes in the conjugation degree greatly influenced the transfection performance of the PEI-DAn conjugates with respect to miRNA condensation and decondensation properties as well as cellular uptake behavior. The PEI-DA3 conjugates could significantly enhance the expression level of miRNA-210 in HUVECs. The overexpressed miRNA-210, in turn, markedly downregulated the expression levels of Efna3 and Ptp1b as well as led to a substantial rise in HUVECs' migration rate in a wound healing assay. Collectively, our results have demonstrated that PEI-DA3 conjugates facilitate the formation of stable nanocomplexes that are loose enough to release miRNAs into the cytosol. The free bioavailable miRNAs, in turn, result in efficient gene silencing comparable to bPEI25 as well as Lipofectamine RNAiMAX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app