Add like
Add dislike
Add to saved papers

The low expression of circulating microRNA-19a represents an additional mortality risk in stable patients with vascular disease.

BACKGROUND: Secondary prevention of atherosclerotic vascular diseases represents a cascade of procedures to reduce the risk of future fatal and non-fatal cardiovascular events. We sought to determine whether the expression of selected microRNAs influenced mortality of stable chronic cardiovascular patients.

METHODS: The plasma concentrations of five selected microRNAs (miR-1, miR-19, miR-126, miR-133 and miR-223) were quantified in 826 patients (mean age 65.2 years) with stable vascular disease (6-36 months after acute coronary syndrome, coronary revascularization or first-ever ischemic stroke). All-cause and cardiovascular mortality rates were followed during our prospective study.

RESULTS: Low expression (bottom quartile) of all five miRNAs was associated with a significant increase in five-year all-cause death, even when adjusted for conventional risk factors, treatment, raised troponin I and brain natriuretic protein levels [hazard risk ratios (HRRs) were as follows: miR-1, 1.65 (95% CI: 1.16-2.35); miR-19a, 2.27 (95% CI: 1.59-3.23); miR-126, 1.64 (95% CI: 1.15-2.33); miR-133a, 1.46 (95% CI: 1.01-2.12) and miR-223, 2.05 (95% CI: 1.45-2.91)]. Nearly similar results were found if using five-year cardiovascular mortality as the outcome. However, if entering all five miRNAs (along with other covariates) into a single regression model, only low miR-19a remained a significant mortality predictor; and only in patients with coronary artery disease [3.00 (95% CI: 1.77-5.08)], but not in post-stroke patients [1.63 (95% CI: 0.94-2.86)].

CONCLUSIONS: In stable chronic coronary artery disease patients, low miR-19a expression was associated with a substantial increase in mortality risk independently of other conventional cardiovascular risk factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app