Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Ca 2+ -ATPase Regulates E-cadherin Biogenesis and Epithelial-Mesenchymal Transition in Breast Cancer Cells.

Progression of benign tumors to invasive, metastatic cancer is accompanied by the epithelial-to-mesenchymal transition (EMT), characterized by loss of the cell-adhesion protein E-cadherin. Although silencing mutations and transcriptional repression of the E-cadherin gene have been widely studied, not much is known about posttranslational regulation of E-cadherin in tumors. We show that E-cadherin is tightly coexpressed with the secretory pathway Ca2+ -ATPase isoform 2, SPCA2 ( ATP2C2 ), in breast tumors. Loss of SPCA2 impairs surface expression of E-cadherin and elicits mesenchymal gene expression through disruption of cell adhesion in tumorspheres and downstream Hippo-YAP signaling. Conversely, ectopic expression of SPCA2 in triple-negative breast cancer elevates baseline Ca2+ and YAP phosphorylation, enhances posttranslational expression of E-cadherin, and suppresses mesenchymal gene expression. Thus, loss of SPCA2 phenocopies loss of E-cadherin in the Hippo signaling pathway and EMT-MET transitions, consistent with a functional role for SPCA2 in E-cadherin biogenesis. Furthermore, we show that SPCA2 suppresses invasive phenotypes, including cell migration in vitro and tumor metastasis in vivo . Based on these findings, we propose that SPCA2 functions as a key regulator of EMT and may be a potential therapeutic target for treatment of metastatic cancer. IMPLICATIONS: Posttranslational control of E-cadherin and the Hippo pathway by calcium signaling regulates EMT in breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app