Add like
Add dislike
Add to saved papers

Synergistic Amplification of Oxidative Stress-Mediated Antitumor Activity via Liposomal Dichloroacetic Acid and MOF-Fe 2 .

Small 2019 May 10
Cancer cells are susceptible to oxidative stress; therefore, selective elevation of intracellular reactive oxygen species (ROS) is considered as an effective antitumor treatment. Here, a liposomal formulation of dichloroacetic acid (DCA) and metal-organic framework (MOF)-Fe2+ (MD@Lip) has been developed, which can efficiently stimulate ROS-mediated cancer cell apoptosis in vitro and in vivo. MD@Lip can not only improve aqueous solubility of octahedral MOF-Fe2+ , but also generate an acidic microenvironment to activate a MOF-Fe2+ -based Fenton reaction. Importantly, MD@Lip promotes DCA-mediated mitochondrial aerobic oxidation to increase intracellular hydrogen peroxide (H2 O2 ), which can be consequently converted to highly cytotoxic hydroxyl radicals (•OH) via MOF-Fe2+ , leading to amplification of cancer cell apoptosis. Particularly, MD@Lip can selectively accumulate in tumors, and efficiently inhibit tumor growth with minimal systemic adverse effects. Therefore, liposome-based combination therapy of DCA and MOF-Fe2+ provides a promising oxidative stress-associated antitumor strategy for the management of malignant tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app