Add like
Add dislike
Add to saved papers

Effect of influent pH on hydrolytic acidification performance and bacterial community structure in EGSB for pretreating crotonaldehyde manufacture wastewater after ozonation.

The objective of this work was to evaluate the effect of influent pH on the hydrolytic acidification (HA) performance and microbial community structure in an expanded granular sludge bed (EGSB) pretreating crotonaldehyde manufacture wastewater (CMW) after ozonation. The results showed that higher chemical oxygen demand (COD) removal rate (40.1%) and acidification degree (27.6%) were obtained at pH 8.0 than those at pH 6.0 and pH 4.0. The concentration of extractable extracellular polymeric substance (EPS) in the sludge gradually decreased with the pH decreasing from 8.0 to 4.0. A similar change was also observed for the concentration of total volatile fatty acids (TVFA) in the effluent. The optimal detoxification efficiency by the HA process was obtained at pH 8.0, with higher removal efficiency (all higher than 90%) of the main toxic pollutants (crotonaldehyde, 5-formyl-6-methyl-4,5-dihydropyran, etc.) and higher anaerobic biodegradation rate (44.5%) in biochemical methane potential (BMP) assay. Among the predominant genera, the Acinetobacter and Pseudomonas were possibly related to biodegradation of pollutants, since their higher relative abundance also coincided with the better performance of the HA process at pH 8.0.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app