Add like
Add dislike
Add to saved papers

A conditional error function approach for adaptive enrichment designs with continuous endpoints.

Adaptive enrichment designs offer an efficient and flexible way to demonstrate the efficacy of a treatment in a clinically defined full population or in, eg, biomarker-defined subpopulations while controlling the family-wise Type I error rate in the strong sense. Frequently used testing strategies in designs with two or more stages include the combination test and the conditional error function approach. Here, we focus on the latter and present some extensions. In contrast to previous work, we allow for multiple subgroups rather than one subgroup only. For nested as well as nonoverlapping subgroups with normally distributed endpoints, we explore the effect of estimating the variances in the subpopulations. Instead of using a normal approximation, we derive new t-distribution-based methods for two different scenarios. First, in the case of equal variances across the subpopulations, we present exact results using a multivariate t-distribution. Second, in the case of potentially varying variances across subgroups, we provide some improved approximations compared to the normal approximation. The performance of the proposed conditional error function approaches is assessed and compared to the combination test in a simulation study. The proposed methods are motivated by an example in pulmonary arterial hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app