Add like
Add dislike
Add to saved papers

Heme Catabolism in the Causative Agent of Anthrax.

A challenge common to all bacterial pathogens is to acquire nutrients from hostile host environments. Iron is an important cofactor required for essential cellular processes such as DNA repair, energy production, and redox balance. Within a mammalian host, most iron is sequestered within heme, which in turn is predominantly bound by hemoglobin. While little is understood about the mechanisms by which bacterial hemophores attain heme from host-hemoglobin, even less is known about intracellular heme processing. Bacillus anthracis, the causative agent of anthrax, displays a remarkable ability to grow in mammalian hosts. Hypothesizing this pathogen harbors robust ways to catabolize heme, we characterize two new intracellular heme-binding proteins that are distinct from the previously described IsdG heme monooxygenase. The first of these, HmoA, binds and degrades heme, is necessary for heme detoxification, and facilitates growth on heme-iron sources. The second protein, HmoB, binds and degrades heme too, but is not necessary for heme utilization or virulence. The loss of both HmoA and IsdG renders B. anthracis incapable of causing anthrax disease. The additional loss of HmoB in this background increases clearance of bacilli in lungs, which is consistent with this protein being important for survival in alveolar macrophages. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app