Add like
Add dislike
Add to saved papers

Joint Transformation Learning via the L2,1-Norm Metric for Robust Graph Matching.

Establishing correspondence between two given geometrical graph structures is an important problem in computer vision and pattern recognition. In this paper, we propose a robust graph matching (RGM) model to improve the effectiveness and robustness on the matching graphs with deformations, rotations, outliers, and noise. First, we embed the joint geometric transformation into the graph matching model, which performs unary matching over graph nodes and local structure matching over graph edges simultaneously. Then, the L2,1-norm is used as the similarity metric in the presented RGM to enhance the robustness. Finally, we derive an objective function which can be solved by an effective optimization algorithm, and theoretically prove the convergence of the proposed algorithm. Extensive experiments on various graph matching tasks, such as outliers, rotations, and deformations show that the proposed RGM model achieves competitive performance compared to the existing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app