Add like
Add dislike
Add to saved papers

Microfluidic Model for Evaluation of Immune Checkpoint Inhibitors in Human Tumors.

Presented is the first demonstration of real-time monitoring of the response of resident lymphocyte populations in biopsied tumor tissue to immunotherapeutic agents in a perfused tumor microenvironment. This technology comprises a microfluidic tumor trapping device constructed from a novel 3D-printed, transparent, noncytotoxic substrate. The 3D-printed device sustains viability of biopsied tissue fragments under dynamic perfusion for at least 72 h while enabling simultaneous administration of various drug treatments, illustrating a useful tool for drug development and precision medicine for immunotherapy. Confocal microscopy of the tumor tissue and resident lymphocytes in the presence of fluorescent tracers provides real-time monitoring of tumor response to various immunotherapies. Devices are additively manufactured in Pro3dure GR-10 (i.e., a relatively new, high-resolution stereolithographic resin with properties suitable for biomedical applications), allowing integration of a set of finely featured functional components into a monolithically constructed platform. The presented platform comprises a new methodology for modeling and analyzing tumor response for the improved prediction of patient-specific immunotherapy efficacy. It is acknowledged that this is the first report of human tumor fragments cultured in a dynamic perfusion system capable of testing the effect of circulating immune checkpoint inhibitors on resident tumor-infiltrating lymphocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app