Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A novel de novo MTOR gain-of-function variant in a patient with Smith-Kingsmore syndrome and Antiphospholipid syndrome.

We report the clinical, biochemical and genetic findings from a Spanish girl of Caucasian origin who presented with macrocephaly, dysmorphic facial features, developmental delay, hypotonia, combined oxidative phosphorylation (OxPhos) deficiency, epilepsy and anti-phospholipid antibodies (aPL). Whole-exome sequencing (WES) uncovered a heterozygous variant in the MTOR gene (NM_004958.3: c.7235A>T: p.(Asp2412Val)) that encodes for the Serine/threonine-protein kinase mTOR. The substrates phosphorylation experiments demonstrated that this variant exerts its effect by gain-of-function (GOF) and autosomal dominant mechanism. GOF variants in this protein have been associated with Smith-Kingsmore syndrome (SKS), a rare autosomal dominant disorder characterized by intellectual disability, macrocephaly, seizure, developmental delay and dysmorphic facial features. Furthermore, the mTOR pathway has been demonstrated previously to be involved in many types of endothelium injuries including the antiphospholipid syndrome (APS), a systemic autoimmune disease characterized by the production of aPL with recurrent vascular thrombosis. Therefore, our patient is the first one with an mTOR variant and diagnosed with SKS and APS. In conclusion, our data expand both the genetic and phenotypic spectrum associated with MTOR gene variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app