Add like
Add dislike
Add to saved papers

The Role of Epoxyeicosatrienoic Acids in Diabetes Mellitus-Induced Impaired Vascular Relaxation of Aortic Rings in Ovariectomized Sprague-Dawley Rats.

AIM: The present study was aimed at determining if type 1 diabetes mellitus (DM) affects vascular function and at elucidating the mechanisms mediating vasorelaxation in both nonovariectomized and ovariectomized Sprague-Dawley (SD) rats.

MATERIALS AND METHODS: Eighty female SD rats were divided into four groups: nonovariectomized healthy (non-OVX-CTR) and diabetic (non-OVX-DM) rats and ovariectomized healthy (OVX-CTR) and diabetic (OVX-DM) rats. Bilateral ovariectomy was performed at the age of 5 weeks, and type 1 DM was induced by streptozotocin at the age of 6 weeks. At the age of 12 weeks, acetylcholine-induced relaxation (AChIR) was assessed in aortic rings in the absence/presence of L-NAME, Indomethacin, and MS-PPOH. Aortic tissue mRNA expression of eNOS, iNOS, COX-1, COX-2, thromboxane synthase 1 (TBXAS1), CYP4A1, CYP4A3, and CYP2J3, as well as plasma oxidative stress, was measured.

RESULTS: AChIR did not differ in non-OVX-DM rats compared to non-OVX-CTR ones. AChIR was significantly reduced in the OVX-DM group compared to the OVX-CTR group. MS-PPOH did not reduce AChIR in OVX-DM rats as it did in OVX-CTR ones. CYP4a3 mRNA expression in OVX-DM rats was significantly lower compared to that in the OVX-CTR group.

CONCLUSIONS: Female sex hormones may protect vasorelaxation in type 1 diabetic rats. Type 1 diabetes impairs vasorelaxation in response to ACh in ovariectomized rats (but not in nonovariectomized rats) by affecting vasorelaxation pathways mediated by EETs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app