Add like
Add dislike
Add to saved papers

Pollen and vegetative secondary chemistry of three pollen-rewarding lupines.

PREMISE: Optimal defense theory predicts that selection should drive plants to disproportionally allocate resources for herbivore defense to tissues with high fitness values. Because pollen's primary role is the transport of gametes, plants may be expected to defend it from herbivory. However, for many animal-pollinated plants, pollen serves a secondary role as a pollinator reward. These dual roles may present a conflict between selection to defend pollen from herbivores and selection to reward pollinators. Here, we investigate whether pollen secondary chemistry in three pollen-rewarding Lupinus species better reflects the need to defend pollen or reward pollinators.

METHODS: Lupinus (Fabaceae) species are nectarless, pollen-rewarding, and produce defensive quinolizidine and/or piperidine alkaloids throughout their tissues. We used gas chromatography to identify and quantitate the alkaloids in four aboveground tissues (pollen, flower, leaf, stem) of three western North American lupines, L. argenteus, L. bakeri, and L. sulphureus, and compared alkaloid concentrations and composition among tissues within individuals.

RESULTS: In L. argenteus and L. sulphureus, pollen alkaloid concentrations were 11-35% of those found in other tissues. We detected no alkaloids in L. bakeri pollen, though they were present in other tissues. Alkaloid concentrations were not strongly correlated among tissues within individuals. We detected fewer alkaloids in pollen compared to other tissues, and pollen contained no unique alkaloids.

CONCLUSIONS: Our results are consistent with the hypothesis that, in these pollen-rewarding species, pollen secondary chemistry may reflect the need to attract and reward pollinators more than the need to defend pollen from herbivory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app