Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Cancer-bone microenvironmental interactions promotes STAT3 signaling.

Prostate cancer (PCa) patients' mortality is mainly attributed to complications caused by metastasis of the tumor cells to organs critical for survival, such as bone. We hypothesized that PCa cell-bone interactions would promote paracrine signaling. A panel of PCa cell lines were cocultured with hydroxyapatite ([HA]; inorganic component of bone) of different densities. Conditioned media (CM) was collected and analyzed for calcium levels and effect on paracrine signaling, cell migration, and viability in vitro and in vivo. Our results showed that calcium levels were elevated in CM from cancer cell-bone cocultures, compared to media or cancer cells alone, and this could be antagonized by ethylene glycol-bis(2-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA), a calcium chelator, or knockdown of Snail protein. We also observed increased signal transducer and activator of transcription 3 (STAT3) phosphorylation and paracrine cell proliferation and migration in LNCaP cells incubated with CM from various cell lines; this phosphorylation and cell migration could be antagonized by Snail knockdown or various inhibitors including EGTA, STAT3 inhibitor (WP1066) or cathepsin L inhibitor (Z-FY-CHO). In vivo, higher HA bone density increased tumorigenicity and migration of tumor cells to HA implant. Our study shows that cancer-bone microenvironment interactions lead to calcium-STAT3 signaling, which may present an area for therapeutic targeting of metastatic PCa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app