MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Methodology and validation for identifying gait type using machine learning on IMU data

Joseph M Mahoney, Matthew B Rhudy
Journal of Medical Engineering & Technology 2019 April 30, : 1-8
31037995
With the rising popularity of activity tracking, there is a desire to not only count the number of steps a person takes, but also identify the type of step (e.g., walking or running) they are taking. For rehabilitation and athletic training, this difference is important to the prescribed regiment. Fourteen healthy adults walked, jogged and ran on a treadmill at three different constant speeds (1.21, 2.01, 2.68 m/s) for 90 s. An inertial measurement unit (IMU) with accelerometer and gyroscope was affixed to their left ankle. Collected acceleration and angular velocity data were partitioned into individual time-normalised strides. These data were used as features in the artificial neural network (ANN) that classified the type of stride. Several ANN models were tested: using only acceleration, only angular velocity and both. Using primarily acceleration data in the trained ANN yielded the best results (>94% correct stride-type identification) after cross-validation. The ANN models were able to accurately classify the gait type of each stride using a single wearable IMU. The accuracy of the method should improve further as more data is added to the ANN training.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
31037995
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"