Journal Article
Review
Add like
Add dislike
Add to saved papers

New insights of poly(ADP-ribosylation) in neurodegenerative diseases: a focus on protein phase separation and pathologic aggregation.

Abnormal protein aggregation is a common pathological feature of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Protein posttranslational modifications (PTMs) play a crucial regulatory role in the formation of pathologic aggregation. Among the known PTMs involved in neurodegeneration, poly(ADP-ribosylation) (PARylation) has emerged with promising therapeutic potentials of the use of poly(ADP-ribose) (PAR) polymerase (PARP) inhibitors. In this review, we describe the mounting evidence that abnormal PARP activation is involved in various neurodegenerative diseases, and discuss the underpinning mechanisms with a focus on the recent findings that PARylation affects liquid-liquid phase separation and aggregation of amyloid proteins. We hope this review will stimulate further investigation of the unknown functions of PARylation and promote the development of more effective therapeutic agents in treating neurodegeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app