Add like
Add dislike
Add to saved papers

Sample size considerations for stratified cluster randomization design with binary outcomes and varying cluster size.

Statistics in Medicine 2019 August 16
Stratified cluster randomization trials (CRTs) have been frequently employed in clinical and healthcare research. Comparing with simple randomized CRTs, stratified CRTs reduce the imbalance of baseline prognostic factors among different intervention groups. Due to the popularity, there has been a growing interest in methodological development on sample size estimation and power analysis for stratified CRTs; however, existing work mostly assumes equal cluster size within each stratum and uses multilevel models. Clusters are often naturally formed with random sizes in CRTs. With varying cluster size, commonly used ad hoc approaches ignore the variability in cluster size, which may underestimate (overestimate) the required number of clusters for each group per stratum and lead to underpowered (overpowered) clinical trials. We propose closed-form sample size formulas for estimating the required total number of subjects and for estimating the number of clusters for each group per stratum, based on Cochran-Mantel-Haenszel statistic for stratified cluster randomization design with binary outcomes, accounting for both clustering and varying cluster size. We investigate the impact of various design parameters on the relative change in the required number of clusters for each group per stratum due to varying cluster size. Simulation studies are conducted to evaluate the finite-sample performance of the proposed sample size method. A real application example of a pragmatic stratified CRT of a triad of chronic kidney disease, diabetes, and hypertension is presented for illustration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app