JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

IL-23 and dendritic cells: What are the roles of their mutual attachment in immune response and immunotherapy?

Cytokine 2019 August
Interleukin-23 (IL-23) is a cytokine that is composed of the subunits p19 and p40, while its receptor (IL-23R) consists of two subunits, that is, IL-23Rα and IL-12Rβ1. The interaction between IL-23 and IL-23R is necessary for exerting cardinal biological effects upon certain cell types, including promotion of memory T cell proliferation and Th17 cell-mediated IL-17 secretion. Accordingly, dendritic cells (DCs) are one of the main sources for IL-23 secretion. Interestingly, IL-23R is also present on the DC plasma membrane, suggesting that IL-23 potentially acts on DCs via an autocrine manner. In this review, we have summarized a variety of IL-23-mediated effects on the intracellular signaling pathways such as Janus kinase 2, tyrosine kinase 2, signal transducer and activator of transcription (STAT), mitogen-activated protein kinase signaling, and so forth, which may underlie numerous processes such as DC maturation, antigen presentation, T cell proliferation/activation, and cytokine secretion, which may be implicated in many immune-related diseases through IL-23/DC interactions. Accordingly, these signaling pathways are extensively involved in the pathogenesis and progression of numerous diseases, including autoimmune disease (e.g., atopic dermatitis, asthma, and multiple sclerosis) and infection (e.g., bacterial, fungal, and viral infections). Taken together, they are potentially applicable to novel but promising strategies for treating numerous diseases associated with the mutual attachment of IL-23 and DCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app