Add like
Add dislike
Add to saved papers

Targeted learning with daily EHR data.

Electronic health records (EHR) data provide a cost- and time-effective opportunity to conduct cohort studies of the effects of multiple time-point interventions in the diverse patient population found in real-world clinical settings. Because the computational cost of analyzing EHR data at daily (or more granular) scale can be quite high, a pragmatic approach has been to partition the follow-up into coarser intervals of pre-specified length (eg, quarterly or monthly intervals). The feasibility and practical impact of analyzing EHR data at a granular scale has not been previously evaluated. We start filling these gaps by leveraging large-scale EHR data from a diabetes study to develop a scalable targeted learning approach that allows analyses with small intervals. We then study the practical effects of selecting different coarsening intervals on inferences by reanalyzing data from the same large-scale pool of patients. Specifically, we map daily EHR data into four analytic datasets using 90-, 30-, 15-, and 5-day intervals. We apply a semiparametric and doubly robust estimation approach, the longitudinal Targeted Minimum Loss-Based Estimation (TMLE), to estimate the causal effects of four dynamic treatment rules with each dataset, and compare the resulting inferences. To overcome the computational challenges presented by the size of these data, we propose a novel TMLE implementation, the "long-format TMLE," and rely on the latest advances in scalable data-adaptive machine-learning software, xgboost and h2o, for estimation of the TMLE nuisance parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app